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Lesson �. Introduction toDynamic Programming

� �e knapsack problem

Example �. You are a thief deciding which preciousmetals to steal from a vault:

Metal Weight (kg) Value

� Gold � ��
� Silver � �
� Platinum � ��

You have a knapsack that can hold atmost �kg. If you decide to take a particularmetal, youmust take all of it. Which
items should you take to maximize the value of your the�?

● �is example problem is pretty small, so we can easily solve it by inspection

● Maximum total value:

● Items that give themaximum total value:

● We can also formulate this problem as a longest path problem:
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● We consider �lling up our knapsack in stages

● In stage t = �, �, �, we decide whether to takemetal t

● �e last stage (stage �) represents the end of our decision process

● Node tn represents

● �e edges represent the decisions we can make

● Suppose we are deciding whether to takemetal � (silver), and we have � kgs of space le� in our knapsack

● Two possible decisions:

�. Takemetal �

○ �is is represented by the edge

○ �is decision has a value of , so we use this as the length of this edge

�. Don’t takemetal �

○ �is is represented by the edge

○ �is decision has a value of , so we use this as the length of this edge

● We can complete the rest of the digraph in a similar fashion

● Key observation. Finding an optimal solution to the knapsack problem is equivalent to �nding the longest path
in this graph from node �� to some stage � node

○ In this example, the longest path is �� → �� → �� → �� with a length of ��
○ �e longest path length tells us:

○ �e nodes and edges in the longest path tell us:

● To reformulate this as a shortest path problem:

○ Negate all edge lengths
○ Connect all stage � nodes to an “end” node with edges of length �
○ Find the shortest path from node �� to the �nish node
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� Dynamic programming

● A dynamic program (DP) is amathematical model that captures situations where decisions aremade sequen-
tially in order to optimize some objective

● In particular:
○ DPs divide problems into stages with a decision required at each stage
○ Each stage has a number of states – the possible conditions of the system at that stage
○ A decision at each stage transforms the current state into a state in the next stage with some associated
cost or reward

● DPs come in several di�erent �avors, and can be described in various ways

● For now, we will think of a DP as a specially-structured shortest/longest path problem

Dynamic program – shortest/longest path representation

● Stages t = �, �, . . . , T and states n = �, �, �, . . . ,N
● Directed graph:
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○ Node tn ←→ being in state n at stage t
◇ Nodes for the tth stage are put in the tth column

○ Edge (tn , (t + �)m)←→ the decision to go to state m from state n at stage t
◇ Length of this edge = cost or reward ofmaking this decision
◇ An edgemust connect a node in the tth column to a node in the (t + �)st column

○ Nodes for the last stage are connected to an “end” node
◇ Typically: all nodes in last stage are connected to the end node with edge lengths of �

● Shortest/longest path problem:
○ Source node = one of the �rst stage nodes (depends on the problem)
○ Target node = end node
○ Edge lengths correspond to rewards�⇒ Find the longest path from source to target
○ Edge lengths correspond to costs�⇒ Find the shortest path from source to target

�



Example �. �e Simplexville Police Department wants to determine how to assign patrol cars to each precinct in
Simplexville. Each precinct can be assigned �, �, or � patrol cars. �e number of crimes in each precinct depends on
the number of patrol cars assigned to each precinct:

Number of patrol cars
assigned to precinct

Precinct � � �

� �� �� �
� �� �� ��
� �� �� ��

�e department has � patrol cars. �e department’s goal is to minimize the total number of crimes across all � precincts.
Formulate this problem as a dynamic program by giving its shortest/longest path representation.
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stage t represents assigning patrol cars to precinct t .
Node th represents having n patrol cars left at stage t , with
precincts t, ttl, . .
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We want to find the shortest path from source to sink in the above graph .

It turns out : ⇒ Minimum total crimes = 37

shortest path length = 37 Patrol assignments :
shortest path nodes = Is → 2, → 32 → 4. → end 2 cars to precinct l

l cars to precinct 2
2 cars to precinct 3



Example �. �e Dijkstra Brewing Company is planning production of its new limited run beer, Primal Pilsner. �e
companymust supply � batch nextmonth, then � and � in successivemonths. Each month in which the company
produces the beer requires a factory setup cost of ��,���. Each batch of beer costs ��,��� to produce. Batches can be
held in inventory at a cost of ��,��� per batch permonth. Capacity limitations allow amaximum of � batches to be
produced during each month. In addition, the size of the company’s warehouse restricts the ending inventory for each
month to atmost � batches. �e company has no initial inventory.

�e company wants to �nd a production plan that will meet all demands on time andminimizes its total production
and holding costs over the next �months. Formulate this problem as a dynamic program by giving its shortest/longest
path representation.
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Let stage t represent month t (t -- I , 2,3) or the end of the decision making process (E-4)
Let node tn represent having n batches in inventory at the beginning of month t (a- 0,1 , 2,3)

Find a shortest path :
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Example �. �e State ofMaryland is conducting research on reducing tra�c on the I-��� corridor. �ree research
teams are currently trying three di�erent approaches to the problem. It has been estimated that the probability that the
respective teams – call them �, �, and � – will fail is �.��, �.��, and �.��, respectively.

In order to decrease probability of failure, the state wants to assign two additional researchers to the project. �e
following table gives the estimated probability that the respective teams will fail when �, �, or � additional researchers
are added to that team:

Probability of failure

Number of new researchers Team � Team � Team �

� �.�� �.�� �.��
� �.�� �.�� �.��
� �.�� �.�� �.��

�e state wants to determine how to allocate the two additional researchers in order to minimize the probability that all
three teams will fail. Formulate this problem as a dynamic program by giving its shortest/longest path representation.
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Let stage t represent the decision to add researchers to team t ( E-- I , 2,3) or
the end of the decision - making process (E--4)

Let node tn represent having n researchers left to add at stage t (n-- o ,
I
, 2)

Find the shortest path:
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⇒ Assign 1 researcher to Team l
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Products of costs and rewards

● Consider Example �

● Let
pi = probability that team i fails for i = �, �, �

● We want to minimize the probability that all teams fail, or:

● We know how to �nd a shortest path – a path with the smallest sum of edge lengths

● What if wanted to �nd a path with the smallest product of edge lengths?

● Recall that the logarithm function ismonotonic increasing:

● �erefore:

● So instead of setting the edge lengths equal to the probabilities,we can set the edge lengths equal to the logarithms
of the probabilities

● Justmake sure to invert the logarithms when interpreting the shortest path length
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Example �. To graduate from Simplexville University, Angie needs to pass at least one of the three courses she is
taking this semester: literature, �nance, and statistics. Angie’s busy schedule of extracurricular activities allows her to
spend only � hours per week on studying. Angie’s probability of passing each course depends on the number of hours
she spends studying for the course:

Probability of passing course

Hours of studying per week Literature Finance Statistics

� �.�� �.�� �.��
� �.�� �.�� �.��
� �.�� �.�� �.��
� �.�� �.�� �.��
� �.�� �.�� �.��

Angie wants to maximize the probability that she passes at least one of these three courses. Formulate this problem as
a dynamic program by giving its shortest/longest path representation.

Hint. Why ismaximizing the probability of passing at least one course equivalent to minimizing the probability of
failing all three courses?

�

Prf #courses passed 713 = I - Prf# courses passed - o} =/ - Pr{ fail all 3 courses }

Let stage t represent assigning
hours lurk to course t (t -

- l
, 2,3) or

the end of the decision making process (t-- 4)
Let mode tn represent having n howslwk left to assign at stage t (n -- 91,2 ,

3,4)

find the shortest path :
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